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ABSTRACT

- Under suitable programs of mechanical or thermal loading, many solid mate-

rials are capable of undergoing phase transformations from one crystal structure

to another. The austenite-martensite transformation that occurs in a variety of

metallic alloys, including the so-called shape~memory materials, provides an exam-

ple. The present paper represents an effort to model coupled thermo-mechanical

effects in the macroscopic response of solids that arise from the occurrence of phase

transformations. A Helmholtz free energy potential is constructed to describe the

thermo-inechanical response of the hypothetical material to be considered here. As

a function of shear strain, the potential is non-convex in a certain range of tem-

perature; this feature is essential for the modeling of phase transformations. Apart

from some general preliminary considerations pertaining to finite thermoelasticity,

the analysis is carried out in the context of a simple problem, idealized from an ex-

periment, in which an annular cylinder is deformed to a state of radically symmetric,

finite anti-plane shear in the presence of differing inner and outer surface tempera-

tures. After constructing all radially symmetric weak solutions involving at most a

single surface of discontinuity of strain or temperature gradient, we determine the

implications for quasi-static motions of the second law of thermodynamics. The

thermo-ftiechanical phase transformation-induced hysteresis, residual deformation

and stress relaxation effects exhibited by this model are discussed. The results con-

cerning creep rate as predicted by the present model are in qualitative agreement

with the laboratory observations. Finally, the shape-memory effect as predicted by

the present thermo-mechanical model in the setting of finite anti-plane shear has

been simulated numerically; a number of pictures selected from the simulation are

included.
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1. Introduction

Many solid materials are capable of undergoing phase transformations from

one crystal structure to another under suitable programs of mechanical or ther-

mal loading. The austenite-martensite transformation that occurs in a variety of

metallic alloys, including the so-called shape-memory materials, provides a well

known example. Experimental observations of the behavior of such materials are

discussed, for example, in [1]. The development of models for the macroscopic

thermo-mechanical response of such materials represents an active, current area

of study in the continuum mechanics of solids. Examples of such investigations

may be found in [21-[10].

The problem of modeling the macroscopic response of a solid undergoing a

phase transformation is an inherently nonlinear one. Most of the studies reported

in [2]-[10] were carried out within the framework of the purely mechanical theory

of finite elastostatics; they are, therefore, appropriate only for the modeling of

load-induced phase transformations taking place at a given temperature. In these

studies, the interface between two material phases emerges as a surface of strain

discontinuity in the relevant equilibrium field. Not all elastic potentials - or

strain energy functions - are capable of sustaining equilibrium fields exhibiting

such singular surfaces. Those that do have this capability correspond to what

have been called non-elliptic elastic materials, because they lead to displacement

equations of equilibrium that, although elliptic for infinitesimal deformations, lose

their ellipticity for a certain range of finite strain.

When surfaces of strain discontinuity occur in equilibrium elastic fields, quasi-

static motions - regarded as one-parameter families of equilibrium states - become

dissipative. Dissipation occurs in the sense that the rate A Tork of the external

forces acting on a portion of the body no longer coincides wi 6he rate of increase

of stored energy. Their difference may be represented as an integral over the slowly

moving surface bearing the strain discontinuity of a fictitious "driving traction" -
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or "Eshelby force" [11] - multiplied by the velocity of the moving singular surface.

In this isothermal, purely mechanical setting, the disparity between the rate of

external work and the rate of storage of energy may thus be regarded as arising

because work must be done to move the phase boundary.

Equilibrium boundary value problems in the theory of non-elliptic elastic

materials suffer a massive breakdown in the uniqueness of solution. Quasi-static

motions in such materials may visit any of the infinitely many available equi-

librium states consistent with the boundary conditions. In order to render the

macroscopic response of such materials determinate, it is necessary to supplement

the constitutive description of the material by a relation that specifies the "kinet-

ics" of the phase transformation, or the rate at which particles transform from

one phase to another. The incorporation of such a kinetic relation into the theory

has been shown to predict isothermal macroscopic response that is in qualitative

agreement with experiments, at least in the one-dimensional theory of tension

experiments [13,1].

The present paper represents an effort to model coupled thermo-mechanical

effects on the macroscopic response of solids that arise from the occurrence of

phase transformations. Apart from some general preliminary considerations per-

taining to finite thermoelasticity in Chapter 2, our analysis is carried out in the

context of finite anti-plane shear, which is the simplest setting in which to study

finite deformations. Chapter 3 is devoted to the construction of a Helmholtz free

energy potential intended to describe the thermo-mechanical response of the hypo-

thetical material to be considered here. This material is designed to model phase

transitions in somewhat the same sense as the van der Waals model describeq the

gas-liquid transition. As a function of strain, the potential is non-convex in a

certain range of temperature.

Motivated by the possibility of large strains arising from phase transforma-

tions in the earth's mantle, Sammis and Dein [14] carried out a simple laboratory
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experiment designed to show that creep could indeed be generated by the occur-

rence of a phase transformation induced by both thermal and mechanical loads.

Their experiment, which is described in detail in Chapter 4, is one that lends it-

self to modeling by finite anti-plane shear, and Chapters 4 through 8 are devoted

to the formulation and analysis of such a model. In particular, the implications

for quasi-static motions of the second law of thermodynamics are determined in

Chapter 5, and construction of a model kinetic relation is undertaken in Chapter

6. Chapter 7 deals with the phase transformation-induced hysteresis, residual

deformation and stress relaxation effects exhibited by the model. The results

presented in Chapter 8 concerning creep rate as predicted by the present model

of the Sammis-Dein experiment are in qualitative agreement with the laboratory

observation reported in [14].

Chapter 9 illustrates the shape-memory effect as predicted by the present

simple thermo-mechanical model in the setting of finite anti-plane shear.
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2. Preliminaries on continuum mechanics

2.1 Global and local versions of balance laws

Consider a body B that, in a reference configuration, occupies a region R

in three-dimensional Euclidean space. A motion of the body on a time interval

L - [to,tf1 is characterized by a one-parameter family of invertible mappings

t) : R R, with

y='(x,t)=x+u(x,t) for (x,t)ERxL. (2.1)

We assume that the deformation k, or equivalently the displacement u, is con-

tinuous with piecewise continuous first and second derivatives on R xL. Let

F(x,t) = Grad P(x, t) stand for the deformation gradient tensor, and assume

that for each t E L, and x E R, the Jaccobian determinant of mapping (2.1) is

positive:

J(x,t) = detF(x,t) > 0. (2.2)

Let p(x) denote the mass density of B at the point x in the reference region

R, b(x, t) the body force per unit mass, and a(x,t) the nominal stress tensor

during the motion. At each t, we require p(') and b(.,t) to be continuous on R,

while o(., t) is to be piecewise continuous with a piecewise continuous gradient on

R. Let p*(y, t) be the mass density of B at the point y in the region Rt occupied

by the body at the instant t, and we require p* (., t) to be piecewise continuous for

each t. For each t E L, the balance laws for mass, linear and angular momentum

require

ID p'dv = ID pdv; (2.3)

JD Irnda + pbdv = -d pdv; (2.4)
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D 7 A o-nda + :P A pbdv = -d 4P A pfidv; (2.5)
J8D JfD WtJD(25

respectively, for all regular subregions D C R. The superposed dot denotes the

partial derivative with respect to t at fixed x.

Next, let q(x, t) denote the nominal heat flux vector, t(x, t) the heat supply

per unit mass and c(x, t) the internal energy per unit mass. At each t, we suppose

that t(.,t) is continuous on R and that q(.,t) is piecewise continuous with a

piecewise continuous gradient on R. The internal energy c(., .) is required to be

piecewise continuous with piecewise continuous first derivatives on R x L. The

first law of thermodynamics requires that at each instant t,

JOD IDJ"DID (2.6)

= pJcp+ p ii ii/2)dv,

for every regular subregion D c R. Finally, let 0(x, t) denote the absolute tem-

perature and 77(x, t) the entropy per unit mass. At each t, we assume that 0(., t)

is continuous with a piecewise continuous gradient on R, while 77(', ") is assumed

to be piecewise continuous with piecewise continuous first derivatives on R x L.

The rate of entropy production in a region D in R is defined by

d
r(t; D) = W f pidv - f q . n/Oda - f /Odv. (2.7)

The Clausius-Duhem version of the second law of thermodynamics requires

r(t;D) >!0 DCR, tEL. (2.8)

At a fixed instant t, localization of the balance laws (2.3) - (2.6) and the

inequality (2.8) at a point x at which all fields are smooth yields the following:
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p*J = p,

Div ar+pb = pii,

OFT = FaT, (2.9)

r4' + Div q + p = pi,

Div (q/0) + g /0 <0pi.
On the other hand, suppose that S(t) is a regular surface in R at time t across

which some or all of the thermo-mechanical quantities suffer jump discontinu-

ities. Localization of (2.3) - (2.8) at a point x on S(t) yields the following jump

conditions:

[p*J = 0,

[an + pH[lV, = 0,
[ffn. - ] + [p(IE + 1u 6 f)]V + [q.- n] = 0, (-0

[plVn + [q. n/01 0,

where
V = V -n, (2.11)

and V = V(x, t) is the velocity of the moving surface S(t) at the point x. The

unit normal n on the singular surface S(t) is chosen such that Vn > 0; if Vn > 0,

the positive side of S(t) is the side into which V (and therefore n) points. If

g(x,t) denotes a generic field quantity that jumps across S(t), we write [g(x, t)] =

9+ (x, t) - g- (x, t), where g+ (x, t) and g- (x, t) stand for the limiting values of g

at the point x on S(t) from the positive and negative sides, respectively.

Conversely, the field equations (2.9) together with the jump conditions (2.10)

imply the global balance laws (2.3) - (2.6) and (2.8).

In addition to the jump conditions listed in (2.10), one can derive the fol-

lowing kinematic results through the smoothness requirements imposed on the

deformation (2.1):
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[FIm = 0, [Ul = -[F]V on S(t), (2.12)

where m is any vector tangent to the singular surface S(t).

2.2 Rate of entropy production

With help of the field equations (2.9) and the jump conditions (2.10) and

(2.12), Abeyaratne and Knowles [12] derived the following alternate representa-

tion for the rate of entropy production defined in (2.7):

r(t; D) = ro0 (t; D) + rc,(t; D) + r,(t; D), (2.13)

where

rloc(t; D) = J (pi0 +  .' - pi)/ dv, (2.14)

rc(t; D) = jD q'Grad0/0 2 dv, (2.15)

r.(t; D) = 1 P - (a+ + -).F]Vn/ da, (2.16)

while 0 is the Helmholtz free energy per unit mass, defined by

P(x, t) = c(x, t) - e(x, t)i(x, t) on R x L. (2.17)

In (2.13), the total rate of entropy production r(t; D) at the instant t in the

subregion D C R is decomposed into three parts: rIoc arises from local dissipation

in the material away from the singular surface; rc, is the entropy production

rate due to heat conduction; finally, r. represents the entropy production rate

due to the moving singular surface S(t). No constitutive assumptions are made

in the derivation of (2.13) - (2.16).

The driving traction f(x, t) acting on the surface of discontinuity S(t) is

defined by
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f(x, t) = p(x) [(x, 0)1 - (0+(x, t) + o-(x, t)) [F(x, t)], (2.18)

for xE S(t), tEL.

Then, from (2.16) and (2.18), r.(t; D) can be written as

r.(t; D) = fj fV,/ da, (2.19)

and localization of (2.8) at point x on S(t) yields

f(x,t)V(x,t) > 0 for x E S(t), t E L. (2.20)

2.3 Finite thermoelasticity

We now specify that the body at hand is thermoelastic and assume that there

are a free energy potential 4! and a heat-flux-response function tl such that, for

every thermodynamic process,

= it (F, 0), (2.21)

q = C(F, 0, Grad 0), (2.22)

o0 = p'F(F, 0), or oj = p,9X(F,O)/8Fj, (2.23)

7 - -o(F,O), or 77=-A(F,O)/O0. (2.24)

Objectivity requires that

4r(QF,0) = T(F,0), 4(QF,0,v) = 4(F,0,v), (2.25)

for every nonsingular tensor F, every proper orthogonal tensor Q, every positive

scalar 0 and every vector v.



-9-

Because of (2.17), (2.21), (2.23) and (2.24), roc defined by (2.14) vanishes

identically for thermoelastic materials, and hence localization of (2.8) away from

the singular surface S(t) yields

P'.,., v). v _ o, for any vector v. (2.26)

This supplies a restriction on the heat-flux-response function q-.

2.4 Isotropic thermo-elastic materials

We assume from here on that the body is thermo-mechanically isotropic, so

that

'P(FQ, 0) = ''(F,0), t(FQ, 0, QTv) = QT 4(F,0,v), (2.27)

for every nonsingular tensor F, every proper orthogonal tensor Q, every positive

scalar 0 and every vector v. Here QT denotes the transpose of Q. It follows that

the free energy 'I&(F, 0) depends on F only through the deformation invariants:

=(F, 0) = (11 ,1 2 ,13 , O), (2.28)

where the fundamental scalar invariants 1, 12,13 are defined by

Il(C) = trC, 2(C) = [(trC)2 - tr(C2)]/12,

I3(C) = detC, C= FTF.

In the presence of isotropy, (2.23) takes the form

= 2p'IF + 2 pfI 2 (I/l - FFT)F + 2I 3 pfl 3FT, (2.30)

where 1 stands for the identity tensor and F - T is the transpose of the inverse of

the nonsingular tensor F.

We assume from now on that the heat-flux-response function 4 depends on

Grad 0 linearly, i.e.,
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4I(F, 0, v) = K(F, 0)v, (2.31)

for every nonsingular tensor F, positive scalar 0 and vector v. Here K is called

the heat conductivity tensor and, in the presence of isotropy, K takes the form

K(F, 0) - 001 + 1 FTF + 02(FTF)2, (2.32)

where 0k. = 04k(11,12,13, 0), k - 0, 1, 2.

By assuming that 01 and 02 both vanish identically, we obtain the generalized

Fourier law:

4(F, 0, Grad 0) = Oo(I 1 , I 2 , Ia, O)Grad O. (2.33)

00 is required to be non-negative by (2.26).

2.5 Thermo-mechanical states of anti-plane shear

Suppose R is a cylindrical region and let X = (0; el, e2 , es) be a rectangular

cartesian frame with the unit vector e3 parallel to the generators of the cylin-

der. Consider a time-independent thermo-mechanical state of anti-plane shear,

in which

1/i = Y, 2 = Z2, /3 = X3 + U(Zl,X2), 0=0(Xl,X2), (2.34)

where the out-of-plane displacement u and the temperature 0 are both defined on

the cross-section D of R. In the given frame, the deformation gradient tensor F

has components:

Fo0-6aO, F, 3 =0, Fa=U, 0  F3 3=1. (2.35)

Here 6 , is the Kronecker delta, Latin and Greek subscripts have the respective

ranges 1, 2, 3, and 1, 2, and repeated subscripts are summed over the appropriate
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range. A subscript proceded by a comma indicates partial differentiation with

respect to the corresponding x-coordinate. The fundamental invariants 11, 12, 13

are given by

Ii-=12=3-+7, 13=1, (2.36)

where -y - I Gradul = u u,. When specialized to the anti-plane shear (2.34),

the constitutive statement (2.30) yields the components of nominal stress a as

oa = [2¢,j + 2(2 + -y2)I2 - p]6A - 2 Ua, IL,

0a3 = [-21,3 +p]u,.,, oa = 2[, 1 + 9P2 ]u,a, (2.37)

a33 = 2fV11 + 4f,2 - P,

where we have written

' = ;(I1,12,0) =p- (I1,I 2 ,1,0), p-= -2pf' 3 (11,I 2 ,1,0), (2.38)

and from (2.36),

11 = 12 = 3 + .y (2.39)

In the absence of body forces, the momentum balance (2.9)2 yields

[p - 2411, - 2(2 + 7 2)1,f],, +[2'I,' 2u,, , ], = O, a = 1,2, (2.40)

and

[M(7, e)u,I ], = 0, (2.41)

where the arguments I and 12 of p and t in (2.40) are given by (2.39), and M

in (2.41) is defined by
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M(, 0) = 2[1 . 1 (11,12, 0) + 'VI2(11,1 2 ,0)]I1 = 2=3+.2. (2.42)

In the absence of heat sources, the first law of thermodynamics (2.9)4 takes

the simple form

[k(y, e)e,, ],, = 0, (2.43)

where k is defined by

k(-, 0) = 0 (3 + _2, 3 + _2, 1, 0). (2.44)

In view of the fact that p, M and k are expressed in terms of u and 0 through

(2.38), (2.42) and (2.44), the equations (2.40), (2.41) and (2.43) actually comprise

four differential equations for two unknowns u and 0, and hence constitute an

over-determined system in general. Without some restriction on the material

properties, one would expect that only very special solutions of (2.41) and (2.43)

would also satisfy (2.40). We say that a thermoelastic material is capable of

sustaining anti-plane shear if, for every domain D, every solution u, 0 of (2.41)

and (2.43) also satisfies (2.40). In general, an isotropic thermoelastic material

need not be capable of sustaining anti-plane shear. We turn next to a sub-class

of such materials which do sustain anti-plane shear.
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3. A special class of thermo-elastic materials

As shown by Knowles [15], all homogeneous, isotropic incompressible hyper-

elastic materials whose elastic potential W depends only on the first fundamental

scalar invariant I1 are capable of sustaining anti-plane shear. Materials in this

class have been called generalized Neo-Hookean materials by Gurtin [101 because

the Neo-Hookean model of rubber elasticity is included among them. Generalized

Neo-Hookean materials have proved to be useful in studying nonlinear effects - es-

pecially qualitative ones - in the simplest possible setting: that of finite anti-plane

shear; see, for example, [10], [16], [17].

Generalized Neo-Hookean materials, being incompressible, do not permit the

useful incorporation of thermal effects of the kind essential in the study of ther-

moelasticity. Jiang and Knowles [18] have introduced a class of homogeneous,

isotropic, compressible hyperelastic materials that do not suffer from this limita-

tion and at the same time are capable of sustaining finite anti-plane shear. The

thermoelastic counterpart of the class of materials studied in [18] is characterized

by the Helmholtz free energy per unit reference volume as follows:

t(11,12,13,0) = ' (I1,0) + ±VI, (I1 , )(I 3 ,e) + 9 (I 3 ,0), (3.1)

where 0 is the absolute temperature, and fI, f and g are functions on (0, oo) x

(0, oo), with 'ir differentiable three times, § and g twice. One can show that the

necessary and sufficient condition for a material of type (3.1) to be capable of

sustaining finite anti-plane shear is the following

(1,e) = 0, 913(1,0) = -1, g13(1,0) = constant, V 0 > 0. (3.2)

In all the following discussion, we choose 913(1, 0) to be zero, which implies that

the undeformed state is unstressed. Without loss of generality, we set g(1, 0) = 0
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and thus 'P represents the Helmholtz free energy density associated with volume-

preserved deformations*.

The components of nominal stress in (2.37) reduce to

0 = 0, 0a3 = 0'3a = M(7, )U,a, 033 = 0, on D, (3.3)

where M is given by (2.42). The true (or Cauchy) stress r is given in terms of a

and F by

,r = UFT/J. (3.4)

From (3.4), (3.3) and (2.35), one can determine the true stresses -ij:

Ta5 = 0, r,3 = r3, = M(y,O)u,., r33 = 72 M(-Y,0). (3.5)

We introduce the shear stress response function f(,y, 0) by

f(-y,0) = yM(-y,0), for (y,0) E [0,oo) x (0,oo), (3.6)

then the magnitude of the resultant of shear stresses r,,3e. is then given by

--7.3 (', 0). (3.7)

One can show that for 0 fixed, the equilibrium equation in x 3 _-direction (2.41)

is elliptic [15] for any out-of-plane displacement u if and only if

M()y, 6 )T( ) >0 V7Y _ 0. (3.8)

or equivalently,

V(3+ Y2 0)[Z (3+_y2,0)+2"y2 1,(3+ y2,0)]>O, V _-e 0. (3 9)
Note that, Ak(1,,I2, 13, 0) - (Ij, 0) if/13 -- 1, by (3.2).
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Consider a deformation of a body composed of a homogeneous, isotropic

thermoelastic material with the Helnholtz free energy potential fV (1,, 12, 13, 0).

If A1 , A2 , A3, are the principal stretches of the deformation, one has

1i = 2  2~+ 22 -A3 2 +3A 1 1 I- 2  3~ (3.10)

Let

'CA, A2 , A3 , 0) V (1, 12, 13, 0), (3.11)

where 1,, 12 and 13 are expressed in terms of the stretches A'. by (3.10). It follows

from (3.4), (2.30), (3. 11) and (3. 10) that the principal true stresses rl, r2 and -r3

are given by

Ai=. OT (Al, A2, A3 , 0), (no sum an i). (3.12)

The Baker-Ericksen inequalities require that the greater of any two princi-

pal stresses shall correspond to the greater of the corresponding two principal

stretches when the stretches are distinct; thus

(ri -T 3 )(A - Aj)> 0 if!As 4Aj, it=1, 2, 3. (3.13)

For the material described by (3.1), one finds from (3.1), (3.10) - (3.12) that the

Baker-Ericksen inequalities (3.13) hold [18] if and only if

iVZ31 (1,t) + 'P1 1 1 1 (i1,0)f (43, 0) > 0, for 0 <13 < (11/3)3. (3.14)

When specialized to the anti-plane shear (2.34), (3.14) reduces to

TP1 (3 + 721) > 0, for Y> 01 (3.15)

or equivalently
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M(-y, 0) > 0, for -y > 0. (3.16)

In deformations other than anti-plane shear, issues such as the form taken by

the ellipticity conditions for the material characterized by (3.1) are more difficult

to analyze. The implication of idealizations in (3.1) is thus not fully clear. One

idealization that is apparent from (3.2) is the fact that the reference configuration

is unstressed at any temperature.

We shall be concerned with a special case of the materials (3.1) whose

Helmholtz free energy for volume-preserving deformations is given by

(1, 0) = y-28)(I - 3)[I -3 - 41(0) V(I--13 + 6 2 ]+h(8), (3.17)

forli > 3, 0 > 0;

with

#(0) =/60(a//#0)M2(1 - 0/9o)2, for 0 > 0; (3.18)

Here, the functions / and h are defined and twice continuously differentiable on

(0, o) and are required to satisfy

p(0) > 0, h"(O) < 0, for 0 > 0; (3.19)

where the constant 0o is a charateristic temperature and c, /3o, m are dimension-

less positive constants subject to the restriction

(o/a)2 > 4/3, (3.20)

this allows the material to achieve some unstressed but deformed states at certain

range of temperature (see eq.(3.28) and Fig. 3a) and this feature is essential to

model shape-memory behavior (see Chapter 9).
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For convenience, let

I(-y,0)=,(3+ 7y,), for7y _6, 6>0; (3.21)

by (3.6), (2.42) and (3.17), the shear stress response function f at constant tem-

perature of this material is given by

(-7, 6) = ' (y, 6) = 1s(e)y7(y2 - 3(6) y + 3a 2). (3.22)

In this special case, the ellipticity condition (3.8) reduces to

(9 - 31(6)'y + 3a 2)(9 - 21(0) + a 2 ) > O, V7 > 0. (3.23)

From (3.18), one can see that (3.23) fails for 6 E [G.,6"] where

6. = (1- 1)0, 0* = (1+ 1)0. (3.24)
m m

Let Al, A2 and A3 be the sets of points in the strain-temperature plane

defined by

A1 = {(-y, 8)/7 _> 0 for 0 <6. ando y < ym(0) for 0 E [e., 8'},

A2 = {(, 0)/ YM(0) < -y < ym (0) for 0 E (0.,O0)}, (3.25)

A3 = {(-y, 0)/ -y _ 0 for 0 > 0" andy > -y,(O) for 0 E [0., 0"]},

where the functions of temperature yM(6) and -ym(G) are defined on [0., O*J by

ym(0) = /3() + V/#2(g)- a2, yM(1) = .8(o) - V/Va2(8)- a2. (3.26)

By (3.21) and (3.17),

< 0 on A2 ;
I.(-Y,6) =j(0)(Y2 - 2l(0)7Y + a 2 ) =0 on OA2 ; (3.27)

>0 onA 1 UA 3 .
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Here, IQ(.,0) is convex for 0 E (0,0.] U [0*,oo) and non-convex for 0 E (0.,0").

Correspondingly, the shear stress response function f. ,0) is monotonic for

0 E (0,0.] U [0*,oo) and non-monotonic for 0 E (0.,0) (See Figures 1 - 3).

Because these features of the free energy and the stress response change at the

temperatures 0. and 0, we call 0. and 0* the lower and upper transition temper-

atures, respectively.

Noting (3.17), one may easily show that the special version of the Baker-

Ericksen inequalities (3.15), or equivalently (3.16), fails for 0 E [0., 0"] where

1 1 /n(4/3)

m 2Ln(flo/a) ' (3.28)

S= 20o - .
Note that the existence of . and 0* is guaranteed by (3.20). By (3.24), (3.28)

and (3.20), we have

0 < 0. < j. < 00 < * < 0". (3.29)

We now investigate the invertibility of the shear stress response function

f(., 0). By (3.27), there exist functions r1 , r 2 and 1r3 such that

ri (f (-y ), o) =-y for (-y,0) E A,;
r"2(f (7, 0), 0) =-Y for (-y,0) E A2; (3.30)

r3 (f Of 0), 0) =-Y for (-y0) EA3;
with continuities:

rl(T-M(O),O) =I2(rM(0),) =-7M(O), for 0E[.,0"],

r 2 (T'm(0),0) = r 3 (rm(0),0) =-ym(0), forO E [9.,0"], (3.31)
r.(f(, o.),o) = r3(f(79 .), 9.), fr 7 C(,

r,(f(y, o), o) = r 3(f(7 0*), 0*), for a > 0,

Here the functions r,,(0) and rM(0) are defined on [0., 0*] by
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"m(0) = 't(m(9),8), T'M(O) = f(yM(O),O). (3.32)

From (3.32), (3.31) and (3.26), one can see that

TM(0) > Tm(0), for 0 E (0.,0*);
(3.33)

,.m(0) = -m(0), for 0 = 0. or 0".

For each fixed 0 in (0., 0*), there is a number rc(0) such that

'r"(0) < rc(0) < -rM(0), (3.34)

and

J '  '(-Y, 0) d'-Y = TC(0)[r 3 (Tc(e), 0) - ri(rc(0), 8)], (3.35)

Tr(0) is the so-called Maxwell stress at the temperature 0. By (3.34), (3.33),

(3.32), (3.26), (3.24) and (3.18),

S-C() = r,(O.) = TM(O.) = f(a, o.),0--0.+ (3.36)
lim T(0) = Tm( 0 ) = M(0*) = f(a,0").0-480-

To characterize a thermoelastic material completely, we must also specify the

heat conductivity k defined by (2.44). From here on, we assume that

k (-y,0) -- k(0), for (t,0) E A, i = 1, 2, 3, (3.37)

where k,(.) are positive-valued functions and

kIi(0) 6 k2(0) # k3(0) 6 k(0), for 0 E (0.,0*) (3.38)
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4. Equilibrium of an annular cylinder in anti-plane shear

In [14], Sammis and Dein describe a simple experiment intended to illustrate

the role of phase transformations in producing large strains and creep ("superplas-

ticity") in solids. Their interest in this issue was motivated by the possibility that

superplastic behavior in the earth's mantle might arise from thermo-mechanically

induced phase transformations.

The experiment of Sammis and Dein involves an annular cylindrical crystal of

cesium chloride (see Fig.4) whose outer cylindrical surface is clamped and main-

tained at a uniform high temperature. The inner cylindrical boundary is attached

to a glass tube through which cold water flows for the purpose of maintaining the

inner wall at a uniform low temperature. A weight is hung from the end of the

glass tube to provide an axial traction on the inner wall. The specimen is thus

subject to both a mechanical load and a temperature gradient. For outer wall

temperatures below a certain critical value, the crystal responds in a conventional

thermoelastic manner, with the inner surface displaced axially by definite amount

that depends on the size of the axial load and the temperature gradient. When

the temperature at the outer wall exceeds the critical value, a phase transforma-

tion from body-centered to face-centered cubic crystal structure is initiated at

the outer wall, and the interface between the two phases moves radially inward.

While the phase boundary is moving, the weight attached to the central glass

cooling tube experiences substantial axial creep, a phenomenon that would not

occur if the response were that of a conventional thermoelastic material. Sammis

and Dein measured the axial creep rate at the inner wall as a function of time

for both subcritical and supercritical outer wall temperatures. In the subcritical

case, very low creep rates were observed, consistent with expectations based on

conventional thermoelastic response. In contrast, much larger creep rates were

observed when the outer wall temperature exceeded the critical value.

Our next objective is to formulate a problem designed to provide a simple
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qualitative model for the experiment of Sammis and Dein[14]. We model the

specimen in their experiment as an annular cylinder composed of a thermoelastic

material in the class of materials specified in the preceding chapter. We idealize

the experiment itself as one in which the annular cylinder is deformed to a state of

radially symmetric, finite anti-plane shear in the presence of differing inner and

outer surface temperatures. The anti-plane shear is produced by a prescribed,

uniformly distributed axial traction acting on the inner surface. After formulating

the corresponding equilibrium boundary value problem, we construct all radially

symmetric weak solutions involving at most a single surface of discontinuity of

strain or temperature gradient, which we call an equilibrium shock. In Chapters 5

and 6, we discuss quasi-static anti-plane shear motions of the annular cylinder, and

in Chapter 7 we determine the corresponding dissipative macroscopic response.

A qualitative comparison of the creep rates observed by Sanmis and Dein with

the results predicted by the present model is carried out in Chapter 8.

Chapter 9 is devoted to an illustration of the shape-memory effect in the

context of the model put forward here.

4.1 Formulation and reduction of the problem

Let the open reference cross-section D be the region bounded by two concen-

tric circles of radii a and b (a < b; see Fig. 5). The temperatures on the inner

wall and outer wall of the cylinder are both specified constants. Let the outer

wall be fixed, and let the axial shear traction acting on the inner wall be given.

Thus, the boundary conditions are given by

T
0 ., 03 T-- where r = a, (4.1)

27ra

0 O, U3 =0 where r = b. (4.2)
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Here r, 4 and z 3 form a cylindrical coordinate system, and the constant T is the

resultant force per unit axial length acting on the inner wall. We consider radially

symmetric anti-plane shear displacement and temperature that are independent

of time:

= U(r), 0 = O(r) on D (4.3)

We suppose the body to be composed of the thermoelastic material described

by (3.1) and (3.17) in Chapter 3. Hence, in the absence of body force, the in-

plane equilibrium equations (2.40) are satisfied automatically and the out-of-plane

equilibrium equation (2.41) may be integrated to give

T
f(y(r), O(r)) = 2rr' 7 E [a, b], (4.4)

where P is given by (3.6). The energy equation (2.43) reduces to

dO(r) qo
(-y(r),0(r)) -- 2irr' r E [a,b], (4.5)

where qo stands for the constant value of heat flux in the cylinder. Using (2.10)

and (2.12), one can show that the heat flux must be continuous across an equi-

librium shock, so that qO is independent of r.

The system of governing equations consists of the two first-order nonlinear

ordinary differential equations (4.4) and (4.5) in the unknowns u and 0. Because

of the assumed symmetry, the shock must be a cylindrical surface at, say, r = s.

For simplicity, we restrict attention to the case for which

0., _< Ob, Oa < 0.; (4.6)

other cases can be treated similarly.

4.2 Temperature distribution
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Under the restriction (4.6)2, Equation (3.37) gives

k(-y(r),O(r)) = kl(0(7 , r E (a, s). (4.7)

For r E (a, b), however, there are three r'atually exclusive possibilities (see Fig.

1 for the sets A,, i = 1, 2, 3) :

(-, 0) E A, i =1, 2, 3. (4.8)

By (3.37), this means

k(-y(r),O(r)) = ki(O(r)), r E (s,b), i = 1, 2, 3. (4.9)

Equations(4.5) and (4.9) together with (4.2)1 give

r = b exp[21rF(O)/qo], r E [r, b], i = 1, 2, 3, (4.10)

where

F(0) = j ki(o) do, i = 1, 2, 3. (4.11)

Since ki(.), i =1, 2, 3, are positive-valued functions, (4.10) can be inverted for i

=1, 2, 3, respectively, to give

0 (r), r E [a,b], i = 1, 2, 3. (4.12)

Similarly, from (4.5), (4.7) and (4.1)1, one has

r = a exp{21r[F1(O) - F1 (O)]/qo}, r E [a,s], (4.13)

which can be inverted to give

0 = Oo(r), r E [a,s]. (4.14)

For each choice of i in (4.12), continuity of temperature requires
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(s) = (s), i = 1, 2, 3, (4.15)

this leads to the determination of the heat flux, q0 = 4i(s), i = 1, 2, 3.

For convenience, define

io (r), r" E [a,8s];
e,(r; s, 6b) = i = 1, 2, 3. (4.16)1 ,(r), r [s,b],

Here, we explicitly exhibit both s and 0b as parameters, because we shall allow

them to change in later chapters. In fact, one can readily show that E1 (r; s, Ob)

is independent of s.

Note that in the case of 0 b < 0., we have i = 1, and there is no possibility of

mixed-phase equilibrium. To obtain a mixed-phase equilibrium, we assume that

Ob > 0,. (4.17)

Since

k(.,0) - ki(0), for 0 _< 0., (4.18)

we must have

Ei(8; s, b) > 0., i = 2, 3. (4.19)

Thus corresponding to each EO, i = 2, 3, s has a lower bound r which is defined

by

e(r!; r, b) = 0., i= 2, 3. (4.20)

For future use, we define functions f! (') on [ri,b] by

Ei (fi (8) ; 8, Ob) = 0., i = 2, 3. (4.21)

One can show that
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f (r*) =-- rj, f(b) = rj, i = 2, 3, (4.22)

where r is defined by

1,(r*,r ,Ob) = 0.. (4.23)

4.3 Displacement field

For, r E (s, b), there are three mutually exclusive possibilities corresponding

to (4.8), which, together with (3.30), yield the strain yj(r) as either

T
-f(r) = rl(r-,El (r;s,Ob)), forr E (s,b), (4.24)

or

y(r) = r 2 ( T, E 2 (r;s,Ob)), forr E (s,b), (4.25)

or

-y(r) = r3(-T, 3 (r;s, Ob)), forr E (s,b). (4.26)
2irr'

Similarly, we have either

-y(r) = r T( Tr, 81(r;S, Ob)), for r E (a,s), (4.27)

for e(a8)

or

-y(r) = ri(-T,9 2(r;8,b)), for r E (a,s), (4.28)2ir

or

-y(r) = rl(-,T 3 (r; 3, Ob)), for r E (a, s). (4.29)
2irr'

Combining (4.24) with (4.27), we get

-y(r) = rl(-TEj(r;s,Ob)), for r E (a,b), (4.30)
2irr

Recalling (3.25) and (3.30), we infer from (4.30) that
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T < T (r, s,0b), Vr E [r, b], (4.31)

where

T (r,s, b) = 27rrM(El(r;s,Ob)) = Tf(r,b,Ob), Vr E [r,b]. (4.32)

Equations (4.30) and (4.2)2 give

u(r) = Ui(r;s,T, Ob) b -- rl(rT ,E1(X;S, Ob)) dx, r E [a,b]. (4.33)

If (4.25) and (4.28) hold, we have

T <Tf ("r, 8, Ob), r E (f2*(a), s],
sE [r, bI, (4.34)

2 r, sb) T T 8'(r,, Ob), r E [s,b],

where

TM (r, s, Ob) = 27rrrM( 2 (r; 8, Ob)),
r e [ (s),b], s E [r ,b]. (4.35)

72 (r, s,b) = 2rrm (92(r; s, Gb)),

Equations (4.25) and (4.28), together with (4.2)2, give the out-of-plane displace-

ment

u(r) = U2 (r;a,T, Ob)

rl(-, 2 (z;s, 2b))dx + r 2 (-,0 2 (;s, Ob))dx], r e [a,a];

-f,.br 2 (-,E 2 (X;s, Ob))dx, rE [s,b].
(4.36)

Finally, the validity of (4.26) and (4.29) requires

* < T3 (r,s,Ob), r E(f3(s),s], 9 E(r3*,bj;
(4.37)

* > T3' (r,, Ob), r E [s, b], s E [r ,b),

where

T M (r, s, 2 M((r;s,b)),r E [(s),b], s E [rm,(b]. (4.38)T3(r, ,,Ob) = 2rC.O(3 (r; s, Oh))
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Equations (4.26) and (4.29) together with (4.2)2 give

u(r) = U3 (r; s,T, Ob)

-[f,'rl( ,E3(X;seb)) dx+fr 3(, e3(X;8,Gb))dxl, rE[a,8J;

-f, r3( , E3 (X;S,Ob))dx, rE [s,bl.
(4.39)

4.4 Non-uniqueness of the equilibrium states

As we have seen in the previous section, the equilibrium problem under con-

sideration does not have unique solution for given T, 0. and Ob in general. To

examine the totality of solutions, we introduce the following sets in the s,T-plane

for fixed Oh:

El(eb) = {(s,T)/ T < Tl(Ob), 8 = b),

22(0b) = {(s, T)/ T2 (s, Ob) T _ T2M (, Ob), 8 E [rb](4.40)i' T _T3M (8, Ob), s E (r*, b]; }(.0

E3 (0b) = (,T)/{ T T (s, 9b), s E [r*,b]

where
Tl(0b) = min {TiM(r,b, Ob)},

re[rl ,b]

TM(8, Ob) = inf {TM(r,S,Ob)},VE (P; (a),b] rE~f2OI),bl(4.41)

TY'(8,eb) = inf {Y3T(r, 8,Ob)),
r (e (*),*.

7m (8,6 b)= max7 (r, s, Ob)}, i= 2, 3.
rE [.,b]

From (4.31)-(4.41), we conclude that a pair of functions E,(';s, Ob) and

U(.;s, T, 0) is a solution of our problem if and only if (s,T) belongs to Ei(0b), i

1, 2, 3. Let Oi, i = 1, 2, 3, denote the corresponding three classes of solutions

as follows
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= { ;8,0b),U(.;s,T, Ob)/ (a,T) E Eo(b), veb E [0.,0"]},
(4.42)

i-= 1, 2, 3.

The solutions in 9a are independent of the shock position s; we will consider these

solutions as s = b. Then, for given T and eb appropriately, we have a solution in

!f, a one-parameter family of solutions in Za2 with the parameter s, r2 < 8 < b,

and a one-parameter family of solutions in !s with the parameter s, r; s b.

For qualitative purposes, these are shown schematically in Fig. 6.

From Fig. 6, one can draw the following conclusions:

(a) 0. < Ob 5 U-_

For a load T such that there exist

0 < T < T 2(b, 0b) a unique solution which is smooth;

T2
m(b, Ob) < T < Tl(0b) two one-parameter families of solutions,

one smooth solution;

T1(Ob) < T < T. a one-parameter family of solutions,

no smooth solutions;

T. < T < oo a unique solution;

(here T. = 27rr*rM(0.)).

(b) j. < 0b < 6*:

For a load T such that there exist

0 < T T1 (0b) two one-parameter families of solutions,

one smooth solution;

T i (Gb) < T < T. a one-parameter family of solutions,

no smooth solutions;

T. < T < oc a unique solution.

For sufficiently large load (T > T.), the solution involves a smooth displace-

ment field u, but the temperature field 0 is not smooth unless
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kl(O.) = k3 (e.). (4.43)

For 0* <- Ob _ 0*, the result is similar to that described in Fig. 6(a) if we only

consider solutions involving at most a single shock, or phase boundary. However,

in the case 0 b _ 0*, it may be necessary to consider solutions involving multiple

shocks.
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5. Quasi-static motions and admissibility

5.1 Quasi-static motions

Here we consider quasi-static motions in which, at each instant, the state

(e,u) is in equilibrium and belongs to the collection:

SU(5.1)

Let L = [to, tl] be a finite time interval, and let A be a mapping of L into ZI; thus

there are two functions 0(., t) and u(., t) defined on [a,b] and such that

A~t ) = (8(.,t), u(., t)), (0(., t), u(.,t)) E % tE L. (5.2)

Every mapping A determines a unique quadruple of functions i(.), s(.), T(.) and

eb(') on L such that

i(t) = 1, 2 or 3 and (s(t),T(t)) E E1(t)(Gb(t)), t E L, (5.3)

and
0 ( ., t ) = O ic tC . 8t ) , te L. (5.4)
u(., t) = U,(t)(.; s(t), T(t), ob(t)),

The mapping A is a quasi-static motion if the associated quadruple has the

following properties:

(a) i(.) is piecewise constant on L, taking one of three values 1, 2, 3 at each

instant t;

(b) s(.), T(.) and Ob(.) are continuous and piecewise continuously differentiable

on L, and (s(t),T(t)) E E,(t)(Ob(t)), Vt E L;

(c) O(r, .) and u(r, .) are both continuous on L for every r E [a, b].

An instant t. E L at which i(t) is discontinuous is called a transition instant.
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Proposition 5.1: Let i(.), 9(.), T(.) and Ob(.) be functions on L with properties

(a) and (b) above. Define 0(., .) and u(., .) on [a, b] x L by (5.4). Then 0 and u

have property (c) if and only if, at every transition instant t. E L,

s(t.) = b. (5.5)

Proof: Suppose first that (c) holds, so that O(r, .) is continuous on L. Then by

(5.4), if t. is a transition instant in (to, ti),

lim, e(t)(r;a(t), b(t)) = lim e,(t)(r;a(t),Ob(t)), r E [a,b]. (5.6)
t-.t.-

There is a 6 > 0 such that i(.) is continuous on (t. - 6,t., + 6) except at t., so

that (5.6) implies

ej(r;s,Ob) = e(r;a,eb), r E [a,b], (5.7)

where j = i(t.-), k = i(t.+), s = s(t.), Ob = 0b(t.). By (4.16), (5.7) is

equivalent to

O0(r; 4j(s)) = o (r; 4(a)), a < <8, (5.8)

ij (r; j (s)) = ik(r; 4k(s)), 8 <r <b. (5.9)

By (4.5), (5.8) implies

qj(s) = k(8), at s = s(t°). (5.10)

From (4.5), (5.9) and (5.10), it follows that

k,(0) = kk(0), 0(8(t.),t.) < : < 6 b. (5.11)

Since t. is a point of discontinuity of i(.), one has j # k. Hence (5.11) contradicts

(3.38) unless (5.5) holds. Minor modifications of the above argument can be used
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to deal with the case t. = to and t. = ti. Thus property (c), in the presence of

properties (a) and (b), implies (5.5).

Next we prove that e(r, .) and u(r, -) are both continuous on L for every

r E [a, b] under the assumption that (5.5) holds at every transition instant t. E L.

Note that continuity of 6(r, .) and u(r, .) at any non-transition instant :-. -very

r E [a, b] follows from the continuity of s(.), T(.) and 0b() as guaranteed by

property (b). At a transition instant t. E L, by property (a) and (5.5), (5.4)

yields

nm ((r, t), u(r, t)) = (Ej(r;b, Ob),U (r;b,T, Ob)), r E [a,b], (5.12)

and

lirn (O(r,t), u(r,t)) = (ek(r;b, Ob),U(r;b,T, Ob)), r E [a,b], (5.13)
t-.t.+

where j = i(t.-), k = i(t.+) and T = T(t.), Ob = Ob(t.). By the analysis in the

previous chapter, one has

(e,(r; b, Ob), U,(r; b,T, Ob)) = (e 1 (r; b, Ob), Ul (r; b, T, Ob)) (5.14)
rE[a,b], i=1, 2, 3.

Hence e(r, -) and u(r, -) are continuous at a transition instant and therefore at

all instants in L. Thus (5.5), in the presence of properties (a) and (b), implies

property (c), and the proposition is established.

5.2 Admissibility

For quasi-static motions in the annular cylinder problem, Equation (2.20)

which is a consequence of the second law of thermodynamics reduces to1

1 Here the normal N is chosen towards the inner wall of the annular cylinder.
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-f(s(t),t) h(t) _ 0, t E L, (5.15)

where the driving traction f is given by

t(T(t) , (s, t)), (5.16)f (s, 0 -- hi(t), (Tr

and hj(.,.) are the material functions defined by

h(T, o) =vI(ri(r, o), 9) - I(r(T, o),9) - r[rl(,r, ) - r(r, o)], (5.17)
forrm(0)r<rM(O), 0.<0<0*, --1,2,3,

where xP is defined by (3.21).

We will say a quasi-static motion is admissible if (5.15) holds.

By the definitions (5.17) and (3.30) of hj and I',, one can see that hi(.,.)

vanishes identically, and that

ahj (r,o) =rj (,,) - rl(r,o0), j = 2, 3,
(5.18)

for T,,,(o) < <rM(O), E (.,0").

Recalling the definition in Chapter 3 of the Maxwell stress rcT(0) and noting that

F2(TM(0), 0) = 1l(rm(o), o) = -ym(O) for 0 E [0., 0"], one can show that

rM (0)

h 2 (r, 9) = - [r (0, 0) - ri(o,, 0)1 do,

h3 (7, 0 ) = j [Pi(a,0o))- ri(o,] do, (5.19)

for r,m(o) < T rM(O), 9 C (0.,").

Therefore, we have the following proposition:

Proposition 5.2: Let A be a quasi-static motion on L. If, at some instant

t E L, A(t) E 2, then the admissibility condition (5.15) requires that either
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s(t) > 0, (5.20)

or

f(s(t), t) = 0. (5.21)

This proposition follows immediately from (5.15), (5.16) and (5.19)1.

As a consequence of the admissibility, the next proposition excludes the pos-

sibility that a particle transforms to phase 2 from either phase 1 or phase 3.

Proposition 5.3: Let A be an admissible quasi-static motion on L. If at some

instant t' E [t0 ,tl), A(t') E a 1Ua 3 , then A(t) E % Ugs for any instant t E [t',tl].

Proof: Suppose the result of the proposition is false. Then there exists an

admissible quasi-static motion A on L such that

A(t') E %iU N, A(t") E 22, (5.22)

where

t' < t", [t',t" C L. (5.23)

Since A(t") E Qf2 implies that s(t") < b, by Proposition 5.1, there exists a finite

interval t., t2] C [t' , t"] where t. is a transition instant such that

h(t) < 0, for to _< t _ t 2,
(5.24)

A(t) E 2 2 , for t. < t _< t 2.

Hence Proposition 5.2 requires that the driving traction f(s(.),.) vanish identi-

cally on [t.,t 2] which, by (5.16) and (5.19)1, implies that

Tit)2Ts(t) -rM(e(st),t)), Vt E [t.,t 2], (5.25)

i.e.

i(T(t) , e(s(t),t)) 2 2( T(t)rst)2 , , = YM((s(t),t)), (5.26)
fortE [t.,t 2].
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Noting that
O - o'0)=, for-y=ym(G), eE[G.,6*], (5.27)

one finds from (4.4) and (4.5) that

Jim -(rot= lim -(T't),r-..8(t)- Or, r-a#(t)+ &r

lim _[fj(e(r,t))aO(r, t)] = Jim [f 2(0(r, t)) ao(r, t](5.28)

for t,. ! t :5 t2 .

By (3.38), Equation(5.28) holds only if

O(s(t),t) = e, Vt E[t.,t21, (5.29)

which implies that

0* = lrn e(s(t),t) = e(b,t.) = eb(t,). (5.30)
t-.t.p+

This contradicts the assumption made ini (4.17), establishing the proposition.

According to Proposition 5.3, an admissible quasi-static motion that begins

in either phase one (!aj) or phase three (%.) can never enter phase two (!a2).

In particular, quasi-static motions that commence at the undeformed state can

never enter phase two. We thus exclude states in Qr2 from here on. Recallng the

definitions (4.16), (4.33) and (4.39) of e,, and U3, one can show that

[Ei1('; b, Ob), U1i('; b. T, eb)] [83 ('; b, e~b), U3 ('; b, T eb)I,

for T<-T (0b).-

Noting the definitions (4.40) and (4.42) Of f, (0b) and 2,j, one can write

a= {e3(.;s,ieb),U3(.;s,T,8b)/ (s,T)EE Ii(Ob)}. (5.32)

Thus, for any quasi-static motion that begins in either phase one (i)or phase

three (Qf3), we have
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O(r, t) = e3(,;s(t), eb(t)),
V(r,t) E [a, b] x L. (5.33)

u(r, t) = U(r; s(t), Tt), 86 t)),

Hence, when the load T(t) and the temperature Ob(t) on the outer wall are

given, the temperature field 0(., t) and the displacement field u(., t) for each in-

stant t E L are determined by (5.33) uniquely up to an unknown function s(.)

which specifies the location of the shock, or phase boundary, at every instant. As

pointed out by Abeyaratne and Knowles [13], this suggests that some additional

constitutive information concerning the kinetics of the phase transformation must

be provided.

For the so-called hard device problem, the displacement 6(.) on the inner

wall would be specified instead of the load T(.). By (5.33),

6 = S(T; s, Gb) = U3 (a; s, T, Ob), at any instant. (5.34)

Recalling (4.39), (3.30) and (3.22), one can show that

(T; < 0, for all T, (5.35)

assuring that there is a unique inverse t(.;s, Gb) for S(.; S, Gb):

T= T(6; s, Ob) (5.36)

for all 6, and for appropriate values of s and Ob.

Define
0(r; s,, Ob) = U3 (r; s, '(6; a, Ob), 0b),

(5.37)

forrE[a,bb], a [rbJ, 6 >0, Gb>G1.

Then by (5.33),

O(r,t) = 9 3 (r;s(t),Ob(t)),

u(r,t) = &(r;S(t),6(t),Gb(t)), V(rt) E [ab] x L. (538)
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Again, the quasi-static motion is described by (5.38) uniquely up to an unknown

function s(.).
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6. Completion of constitutive assumptions

As we have seen in Chapter 5, additional constitutive information is needed

in order to determine the location of the phase boundary during quasi-static mo-

tions. One may view this constitutive deficiency as arising from the fact that

the constitutive relations (2.21) - (2.24) are not meaningful on the phase bound-

ary. In this chapter, we complete the constitutive description of the material by

specifying a kinetic relation that controls the rate at which the phase transfor-

mation takes place, and a transformation strain that determines the onset of the

transformation.

6.1 The kinetic relation

As in the work of Abeyaratne and Knowles [13] on modeling phase transfor-

mations in the setting of finite elasticity, we assume that the normal component

of the propagation velocity of phase boundary depend on the driving traction

and the temperature on the phase boundary. Thus we suppose that there exists

a function I0(., 6) for 6 E [0., 0*] such that

VN(x,t) = '(f(x, t), 8(x, t)), forx E S(t), t E L. (6.1)

For the annular cylinder problem, we have shown, in the previous chapter,

that

f(s,t) = h(Tt)-,(s, t)), for (s,t) E [a,bj x L, (6.2)

where h(., .) is a material function defined through the inverse functions 1 3 , r1
of (3.30) by

h(r, 6) = ) [ 3 (, 0)- li (, )] d . (6.3)

for -,(e) _ T- _ M(6), E [.,6'],
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where r(0) is the Maxwell stress at temperature 0.

Define

fm (o) = h(rm(o),o), fM(o) = h(m(o),o), foroE [o.,o']. (6.4)

Then by (6.3),

fm (o) < h(T,O) < fm(o), for Tyn(o) _5Tr <TM(o), oE [o.,o6]. (6.5)

Hence in the cylinder problem, the kinetic response function V(., 0) is to be defined

on (fm(0), fm(0)) for 0 E [0., 0*], and the kinetic relation (6.1) specializes to

- = V(f( s , t), O(s, t)), for (s, t) E [a, b] x L, (6.6)

where s(t) is the radius of the phase boundary at time t.

Concerning the form of the kinetic function (see Fig.7), we assume that V(., 0)

is continuous on (fmo(0), fm(0)) for every 0 E (0., 0) and that

(i) There exist two material functions m(0) and M(O) on (0., 0*) satisfying

fm(6) < m(o) <0< M(O) < fM(o), for 0 E (0.,o'), (6.7)

and such that

< 0 for fm(0) < f < m(O);

Q'(f,6) = 0 for m(o) _< f _< M(O); 0 E (0.,0"), (6.8)

> 0 for M(O) < f <fM(O);

(ii) moreover

V(o,o) = o, for 0 E [.,o'], (6.9)
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lir fly, 0) = -eo, limr V(f,) = o, for e e (.,e"). (6.10)
f--f. (0) f.-fM(0)

Note that m(O) = M(O) - 0 is a permissible choice.

If T(t) is given and o(s(t), t) is represented in terms of s(t) by (5.38) and

(4.16), then (6.6) become an ordinary differential equation for s(t). To arrive at

an appropriate initial condition for this differential equation, we need a criterion

for initiation of the phase transformation, to which we now turn.

6.2 The transformation strain postulate

Define two functions y'() and yC(.) on [0., 0*] by

c(0) =rl(,rc(d),O), -yc(o) =r 3(rc(O),O), (6.11)

where rc(O) is the Maxwell stress.

Assume that there exist two material functions yT(') and -yT(.) on (0., 0"),

taking values (see Fig. 8)

_Yo(s) < _Y (s) < -M (s) < _Y (s) _< -T(s) < -yc(s),
(6.12)

for 0 E C0., 0"),

such that

i) A particle at r = f will "spontaneously" transform from phase-1 to phase-3

at t = tif

(f,") E (.,0") and -y(f,t) = -T(O(,-)); (6.13)

ii) A particle at r = f will "spontaneously" transform from phase-3 to phase-1

at t = !if
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O~ t (0., 0) and Y() =Y(~:,t (6.14)

We may call WT(.) and -yT(.) the (1,3)-transformiation strain and the (3,1)-

transformation strain, respectively.
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7. Macroscopic thermo-mechanical responses

We now elucidate the features of the macroscopic response of the cylinder

under various loading programs, with the temperature Ob at the outer wall fixed.

We shall adopt a kinetic relation of the type illustrated in Fig. 7. For convenience,

we recall here from (5.34) and (5.36) the macroscopic response for soft and hard

devices, respectively:

6(t) = 6(T(t);S(t),9b(t)), tO : t < t1 ; (7.1)

T(t)=t(6(t);s(t),b(t)), tO t < tl. (7.2)

7.1 Hysteresis and rate-dependence

First let T(t) - t, corresponding to soft device loading at a constant rate

X from the undeformed state. Assume that the final value of the load T is larger

than T.(b), and that the fixed value of the outer wall temperature Ob is such

that 0. < Ob < 0.. The T - 6 response is shown schematically in Fig. 9.1 After

loading begins, the point (6(t), T(t)) rises from the origin 0 along the response

curve OAQ, associated with a single phase solution at each instant. At t = i,

the point (6(t), T(t)) reaches the point Q in Fig. 9. When this occurs, the

amount of shear -y(b, t at the outer wall achieves the value -yT(Ob) of the (1,3)-

transformation strain at the wall temperature 0b, so that a phase transformation

is initiated according to the initiation criterion (6.13), and a 1,3-phase boundary

emerges at r = b. The kinetic relation (6.6) then takes over, and the phase

boundary has the initial velocity i(t) = - V(f(b, t), Ob). Under the control of

(6.6), s(t) monotonically decreases with t until s = r (0b); this occurs at time t =

T.(0b)/X. The axial displacement 6(t) at the inner wall is given by (7.1), and point

I Here it is assumed that 0. < 0b < j.; this guarantees the absence of residual

deformation, which is considered in the next section.
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(6(t), T(t)) moves along the curve QBP. This stage of the process is accompanied

by a phase transformation. As the load T(t) continues to increase, the phase

boundary remains at r = r*(Gb) since the temperatures at points for which r <

rT(Ob) are too low ( < 0.) for the material to support a phase transformation.

Now suppose that T(t) is decreased at the constant rate X from its largest

value at the point Z in Fig. 9 to zero. The associated response curve at first

follows the arc ZP, and the phase boundary stays at r = r3(0b), so there is no

reverse phase transformation at this stage. As T(t) continues to decrease, s(t)

increases with time under the control of (6.6), i.e., the phase boundary moves

toward the outer wall, and the point (6(t), T(t)) moves along the curve PCA. As

T(t) decreases to zero from its value at A, s(t) remains at the value b until the

point (6(t), T(t)) returns to the origin along the curve AO.

If we change the loading rate X, the arcs QBP, PCA will change, but OAQ

and PZ would remain the same. For different loading-unloading-reloading pro-

cesses, we have different macroscopic response curves similar to those predicted

by Abeyaratne and Knowles[13].

7.2 Residual defomation

If the outer wall temperature Ob is fixed such that 0. <O O < j", some residual

deformation would be produced by the mechaniral cycling process described in

the previous section. In this case, the macroscopic response, during the loading

period, is qualitatively the same as that sketched in the last section, but during

the unloading period, it is quite different. At first the response curve (see Fig.

10) follows the arc ZP, and the phase boundary remains stationary at r = r*(Gb).

When T(t) decreases to zero from T.(06), according to (6.6), the phase boundary

moves towards the outer wall and arrives at r = 81 < b, corresponding to the arc

PCD. If the driving traction f at the phase boundary at this instant, say t = tj,

is less than the critical value m(G(si, ti)), then the phase boundary continues to
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move towards the outer wall, and the point (6(t), T(t)) "creeps" to E from D at

zero load. Creep response under more general conditions will be discussed in the

next chapter.

7.3 Stress relaxation

Let the outer wall temperature 0b be fixed, with 9. < 0b < 0*. We first let

6(t) = At, corresponding to hard device loading at a constant rate A from the

undeformed state. The corresponding response curve' is the arc OQB in Fig. 11.

If we stop loading at B, subsequently keeping 6 constant, the phase boundary

continues to move towards the inner wall, and the point (6(t), T(t)) approaches

the point C at which the driving traction is equal to the critical value.

1 It is assumed in Fig. 11 that . < b <..
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8. Creep due to phase transformation

As described in Chapter 4, the experiment of Sammis and Dein[14] suggests

that a solid may creep at constant load when it experiences a phase transforma-

tion. In this chapter, we discuss the possible occurrence of creep as predicted by

our model, and we show that the predictions are in qualitative agreement with

the experimental results reported in [14].

We consider loading by a soft device, with the load T(t) at t given by

T t/tl, O t !_ tj;'(t) -(8.1)

T, t > ti,

corresponding to ramp loading until time ti, followed by a constant load T. The

outer wall temperature eb is kept constant in the range (0.,0*). The annular

cylinder is said to creep if the displacement 6(t) at the inner wall varies with time

in the time interval [t1, oc) during which the load remains constant at the value

T. After the constant-load stage is reached, the creep rate at the inner wall is

found from (7.1) to be given by

S(t;)= -- -(T; 8(t),Ob)i(t), for't> 1, (8.2)

where the radius s(t) of the phase boundary at time t is the solution of the

ordinary differential equation (6.6) that satisfies the initial condition

s(ti) = 81. (8.3)

Here 81 E (r, b] is the radius of the phase boundary at the end of the ramp

loading period. One may have either s, = b or s1 < b. In the former case, the

ultimate load level T is too small to have initiated a phase transformation during

the ramp period. In the latter case, a phase transformation has been initiated

during the ramp period, and the phase boundary has already moved inward to
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r = si by the time the ultimate load level T is reached. (See the discussion in

the previous chapter concerning constant-rate loading processes.)

Since by (5.33) the temperature distribution 0(r, t) depends on the time only

through the phase boundary radius s(t) when the outer wall temperature 0b is

kept constant, one may write O(8(t), t) - O(s(t), Ob), where we have also indicated

explicitly in the notation the dependence on the outer wall temperature Ob. By

(6.2), we may then rewrite the kinetic relation (6.6) in the form

- )= V*(s(t);T,Gb), fort > tl, (8.4)

where

V'(s;T, Ob) = 'J(h(i-, 0(8,Ob)),O(s,Ob)), (8.5)

while V is defined by (6.1). We note that the differential equation (8.4) is au-

tonomous.

According to (8.2), the creep rate 6(t) is zero if the radius of the phase

boundary s(t) is constant for t > ti. This occurs if and only if the differential

equation (8.4) has the solution

s(t) =_ si, for t > ti. (8.6)

This in turn happens if and only if

V*(s;T, Ob) = 0. (8.7)

Thus creep is absent if and only if the initial radius sl is a zero of the kinetic

response function V*(.;T, Ob). Whether or not (8.7) holds will depend not only

on the ultimate load level T and the value of the outer wall temperature Ob, but

in general on the particular kinetic response function and on the detailed values

of the other constitutive parameters of the model as well.
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For the loading program (8.1), for a specific kinetic response function V of

the type shown in Fig. 7, and for suitably chosen values of the various constitutive

parameters, we have numerically solved the initial value problem (8.4), (8.3) and

determined the creep rate according to (8.2) for four different values 01, 02, 03, 04

of the outer wall temperature, ordered by 01 < 02 < 03 < 04. The results are

shown in Fig. 12 as plots of 6 vs. time t. The computation shows that no creep

occurs at the two lower temperatures, but significant creep rates have appeared

at the higher temperatures. The qualitative features of these results agree with

the observations of Samnis and Dein [14], which are sketched schematically in

Fig. 13.

Our numerical results in Fig. 12 seem to suggest that

lim S(t) = O. (8.8)

To see this long-term feature of creep, we assume that creep occurs after the ramp

loading period under consideration. Let the arc OQA in Fig. 14 represent the

response curve corresponding to the ramp loading period [0, ti]. The subsequent

response must correspond to a horizontal line segment starting at the point A,

say AB. By the property of the autonomous equation (8.4), the final radius sf of

the phase boundary corresponding to the point B must be such that

V*(a;T, b) > sf. (8.9)1 "- 0, s = Sf .

This assures that the autonomous equation (8.4) can be integrated as

t *I dr
t =t, +] V(r;T,Ob)' >f. (8.10)

The integral in (8.10) is divergent as s tends to s! if

Urm V*(s;T, Ob) = 0. (8.11)
--* 8 - 8f
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Any kinetic response function V* with the property (8.11) thus gives

lim a(t) = af, and li. h~(t) = 0. (8.12)
t-+00 t-.+OO

The long-time result (8.8) then follows from (8.2) and (8.12).
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9. The shape-memory effect

For 0 E (0., "), the Helmholtz free energy potential IQ(., 0) in (3.21) has two

wells (see Fig. 15), with corresponding local minima at -y =0 and at -y = -yo(0) and

correspondingly, the stress-straiu response curve has the form shown in the Fig.

3(c). This allows the body to achieve an unstressed but deformed state through a

mechanical cycling process at the fixed temperature 0, starting at the undeformed

state. The residual deformation can be removed through a temperature cycling

process, because the unstressed state must also be undeformed as long as 0 E

(0, 0.) U (#', oo). Fig. 16 illustrates the so-called shape-memory behavior.

To see the shape-memory effect in the simple setting of finite anti-plane shear

of the annular cylinder, we consider a mechanical cycling process T = T(t), 0b =

constant, followed by a thermal cycling process Ob = 6b(t), T = constant:

Tot, O<t<1;

T(t)= To (2 - t), 1 < t < 2; (9.1)

10, 2 __ t < 3,

0[ , 0< t < 2;

Ob=Ob(t) = 1+ A0(1 -j.)(2-t), 2 t < 2.8; (9.2)

01 - 5(01 - #.)(3 - t), 2.8 < t < 3,

where 01 E (0.,") and To >_ T.(0 1 ).

The macroscopic response arising from this program of thermo-mechanical

loading is shown schematically in Fig. 17. During the mechanical cycling period,

the T - 6 response is represented by the path OQPZD, and some residual defor-

mation is clearly produced (see Section 7.2 for details). The mechanical load T

vanishes identically during the temperature cycling period; the thermal response

6 vs. Ob is shown in Fig. 17(b). After the wall temperature 0b begins to drop, the
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phase boundary moves towards the outer wall, and the point (6(t), Ob(t)) moves

along the curve DE. At the point E, the phase boundary disappeared at the outer

wall and the residual deformation is removed. The point (6(t), b(t)) moves along

the line segment EF as Ob continues decreasing to 6., and it moves along the line

segment FO when Ob increases from j. to 01. Neither phase transformation nor

deformation accompanies this stage of the process.

We have made a numerical simulation to demonstrate the shape-memory

behavior of the annular cylinder during the thermo-mechanical loading process

described by (9.1) and (9.2). For appropriately chosen values of the constitutive

parameters, Fig. 18 shows the configurations of half a cross section of the body

at a sequence of time instants.

During the mechanical cycling process, a phase transformation is initiated

and a 1,3-phase boundary emerges at the outer wall of the cylinder when the

mechanical load reaches a certain level. The phase boundary moves towards the

inner wall until it coincides with the surface r = r3 (01) as the load continues to

increase. This is shown by Fig. 18(a) and (b) in which the darker area represents

the part of the body where the material is in phase-3. As we have discussed

in Chapter 7, the phase boundary remains at r = r;(01) when the load T(t)

continues to increase (see Fig. 18(b) and (c)). From Fig. 18(c), (d) and (e), one

can see that the load T(t) decreases from its maximum To, the phase boundary

stays at r = r3 (01), and it moves backwards only after the load drops below a

certain level. Fig. 18(f) shows that at the end of mechanical cycling process,

the body is in a two-phase equilibrium state and some residual deformation has

been produced. During the temperature cycling process, the phase boundary

continues to move towards the outer wall and disappears there as the outer wall

temperature decreases. This is shown by Fig. 18(f), (g) and (h). Finally, Fig.

18(h) and (i) show that the body remains at the undeformed-unstressed state

during the stage of temperature increasing. Therefore, we see that the residual
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deformation produced by the mechanical cycling process has been removed during

the temperature cycling process and the body has achived its original shape.
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Appendix: A note on the constitutive parameters

As mentioned in Chapters 8 and 9, we have done some numerical work to

exhibit the creep feature and the shape-memory behavior predicted by our model.

It should be mentioned that the available experimental data is insufficient to permit

the determination of all constitutive parameters needed in the model constructed

here. For the purpose of making qualitative comparison with experiments we have

made rather arbitrary choices of these parameters. For those readers who may be

interested, we give here some details regarding our computation.

We have assumed that the heat conductives k, and k3 are two different con-

stants, and we have approximated the kinetic response function V by a piecewise

linear function:

sM(f - dMfm(O)), dMfm < f < fM;
fV(f, ) -- o ), d,,f,(o) < f __ dtf(O); VO E 10., O"].M (f - d. f.(O)), fm(O) < f < dinf.o(0),

where sM, sAn, dM and dm are all constants.

The numbers we assigned t, the constitutive parameters are listed in the fol-

lowing table; the first row was used for modeling creep and the second was used foi

modeling shape-memory behavior.

k3/kl a flo/a n m 8 ,9 8A d, dAf

1.5 .04 1.35 3 9.5 .001 .01 2 x 10 " 4 x 102

1.5 .04 1.23 3 2.3 .001 .3 2 x 10 3 x 10
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One may notice that the values of sM and dM in the first row are much smaller

than those in the second row; this results in the fact that the phase boundary

propagates comparatively more slowly, so that we have a better view in the plots

of creep rate vs. time shown in Fig. 12.



-54-

REFERENCES

[1] L. Delaey, R.V. Krishnan, H. Tas and H. Warlimont, Review: Thermoelas-

ticity, pseudo-elasticity and the memory effects associated with martensitic

transformations, Journal of Material Science, 9(1974), 1521-1555

[2] J.K. Knowles, On the dissipation associated with equilibrium shocks in finite

elasticity, Journal of Elasticity, 9(1979), 131-158

[3] R. Abeyaratne, Discontinuous deformation gradients in plane finite elasto-

statics of incompressible materials, Journal of Elasticity, 10(1980), 255-293

[4] R.D. James, Finite deformation by mechanical twinning, Archive for Rational

Mechanics and Analysis, 77(1981), 143-176

[5] R.D. James, Displacive phase transformations in solids, Journal of the Me-

chanics and Physics of Solids, 34(1986), 359-394

[6] R. Abeyaratne and J.K. Knowles, Non-elliptic elastic materials and the mod-

eling of dissipative mechanical behavior: an example, Journal of Elasticity,

18(1987), 227-278

[7] R. Abeyaratne and J.K. Knowles, Non-elliptic elastic materials and the mod-

eling of elastic-plastic behavior in finite deformation, Journal of the Mechan-

ics and Physics of Solids, 35(1987), 343-365

[8] P. Rosakis, Ellipticity and deformations with discontinuous gradients in finite

elastostatics, to appear in Archive for Rational Mechanics and Analysis

[9] S. Silling, Phase changes induced by deformation in isothermal elastic crys-

tals, Brown University Technical Report, NSF Grant MSM 8658107/2,

February, 1988

[10] M.E. Gurtin, Two-phase deformations of elastic solids, Archive for Rational

Mechanics and Analysis, 84(1983), 1-29



-55-

[11] J.D. Eshelby, The continuum theory of lattice defects, Solid State Physics

(Edited by F. Seitz and D. Turnbull), Vol.3. Academic Press, New York

[12] R. Abeyaratne and J.K. Knowles, On the driving traction acting on a surface

of strain discontinuity in a continuum, to appear in Journal of the Mechanics

and Physics of Solids

[13] R. Abeyaratne and J.K. Knowles, On the dissipative response due to discon-

tinuous strains in bars of unstable elastic material, International Journal of

Solids and Structures, 24(1988), 1021-1044

[14] C.G. Sa-mmis and J.L. Dein, On the possibility of transformational super-

plasticity in the earth's mantle, Journal of Geophysical Research, 79(1974),

2961-2965

[15] J.K. Knowles, On finite anti-plane shear for incompressible elastic materials,

Journal of the Australian Mathematical Society, Series B, 19(1976), 400-415

[161 J.K. Knowles, The finite anti-plane shear field near the tip of a crack for

a class of incompressible elastic solids, International Journal of Fracture,

13(1977), 611-639

[17] J.K. Knowles and A.J. Rosakis, On the scale of the nonlinear effect in a crack

problem, Journal of Applied Mechanics, 108(1986), 545-549

[18] Q. Jiang and J.K. Knowles, A class of compressible elastic materials capable

of sustaining finite anti-plane shear, to appear in Journal of Elasticity



0 =Y(e)//-r=ym~ )

0" A 30*

0Al

0

Fig. 1. The sets of points in the strain-temperature plane

0

tt <LU2 < ~T3

Fig. 2. Constant-stress curves



(b) 0E(0., .) U(, 0)

0 y

(C) 0e(O.,e)

Fig. 3. Stress strain response curves



Cold water in

* b

- Specimen

r CO

Weight

8T 2a

Cold water out

Fig. 4. Sammis and Dein's experiment



xx

Fig. 5. The annular cylinder



T
t3 (0b~)

I T T TMsb

T*(B)b) - - - - - - - -3(,b:

T1(Ob) - ---- -

o2 bOb 0~Ob b)I Ib (

(a) * (b

T

t f3 Ob)

T T TMsb

* ob - - - - 3( b (SOb b )
T = T"(,)

f(0b) f*6b~

Fi. . aamee set f,(6b), 2O) f(oi d,~ln



C' (f, 0)

0 M(0) ff(O

Fig. 7. Kinetic response function



area (A1 ) = area (A 2 )

TM (O ) ... . . . . . . .

I I
I I I

I II T M

I I

II

Y0(0) YT(G) 'YM(0) Ym(O) 7 T((O) yC(()

Fig. 8. The transformation strains IT(O), -T(te)



TA

z

P

6 b(T b,~,0) 6b)~,b

b = (T, s, 0,), ~~I'

015

Fig. 9. Loadi ng- unloading path



TB

Fz

Fig. 10. Residual deformation



TB

Fig. 11. Load relaxation



98 < <3<84

w

63

62

TIME t

Fig. 12. Plots of creep rate 6 vs. time t as predicted by the present model
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Fig. 13. Sammis and Dein's experimental data (note logarithmic scales)



T 1

Fig. 14. Creep response curve in the 6,T-plane
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Fig. 16. Illustration of shape-memory behavior
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Fig. 17. Macroscopic response of the cylinder during a process
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Fig. 18. Selected frames from simulation of shape-memory effect
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